Stability Bounds for Stationary phi-mixing and beta-mixing Processes

نویسندگان

  • Mehryar Mohri
  • Afshin Rostamizadeh
چکیده

Most generalization bounds in learning theory are based on some measure of the complexity of the hypothesis class used, independently of any algorithm. In contrast, the notion of algorithmic stability can be used to derive tight generalization bounds that are tailored to specific learning algorithms by exploiting their particular properties. However, as in much of learning theory, existing stability analyses and bounds apply only in the scenario where the samples are independently and identically distributed. In many machine learning applications, however, this assumption does not hold. The observations received by the learning algorithm often have some inherent temporal dependence. This paper studies the scenario where the observations are drawn from a stationary φ-mixing or β-mixing sequence, a widely adopted assumption in the study of non-i.i.d. processes that implies a dependence between observations weakening over time. We prove novel and distinct stability-based generalization bounds for stationary φ-mixing and β-mixing sequences. These bounds strictly generalize the bounds given in the i.i.d. case and apply to all stable learning algorithms, thereby extending the use of stability-bounds to non-i.i.d. scenarios. We also illustrate the application of our φ-mixing generalization bounds to general classes of learning algorithms, including Support Vector Regression, Kernel Ridge Regression, and Support Vector Machines, and many other kernel regularization-based and relative entropy-based regularization algorithms. These novel bounds can thus be viewed as the first theoretical basis for the use of these algorithms in non-i.i.d. scenarios.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stability Bounds for Stationary φ-mixing and β-mixing Processes

Most generalization bounds in learning theory are based on some measure of the complexity of the hypothesis class used, independently of any algorithm. In contrast, the notion of algorithmic stability can be used to derive tight generalization bounds that are tailored to specific learning algorithms by exploiting their particular properties. However, as in much of learning theory, existing stab...

متن کامل

Generalization Bounds for Time Series Prediction with Non-stationary Processes

This paper presents the first generalization bounds for time series prediction with a non-stationary mixing stochastic process. We prove Rademacher complexity learning bounds for both average-path generalization with non-stationary β-mixing processes and path-dependent generalization with non-stationary φ-mixing processes. Our guarantees are expressed in terms of βor φ-mixing coefficients and a...

متن کامل

Chromatic PAC-Bayes Bounds for Non-IID Data: Applications to Ranking and Stationary \beta-Mixing Processes

Pac-Bayes bounds are among the most accurate generalization bounds for classifiers learned from independently and identically distributed (IID) data, and it is particularly so for margin classifiers: there have been recent contributions showing how practical these bounds can be either to perform model selection (Ambroladze et al., 2007) or even to directly guide the learning of linear classifie...

متن کامل

Strong Mixing Coefficients for Non-commutative Gaussian Processes

Bounds for non-commutative versions of two classical strong mixing coefficients for q-Gaussian processes are found in terms of the angle between the underlying Hilbert spaces. As a consequence, we construct a ψ-mixing qGaussian stationary sequence with growth conditions on variances of partial sums. If classical processes with analogous properties were to exist, they would provide a counter-exa...

متن کامل

Determination of stationary region boundary in multiple reference frames method in a mixing system agitated by Helical Ribbon Impeller using CFD

The multiple reference frames (MRF) method is the most suitable method tosimulate impeller rotation in mixing systems. Precise determination of stationaryand moving zones in MRF method leads to accurate results in mixing performance.In this research, the entire volume of mixing system was divided into two zones.The kinetic energy values were used to distinguish the zones with differentvelocitie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Machine Learning Research

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2010